Snake

Sophie Horwitz, Arinah Karim, Matthew Compton, Sabrina Blumberg
April 2021

1 Project Description

For our project, we decided to create the Snake game that will teach itself to
pass through as many game levels as possible with reinforcement learning. The
rules of the Snake game are to get the head of the “snake” to overlap the targeted
square. The “snake” begins as a single square and gets one square longer for
each targeted unit (the ‘food’) it overlaps, and the game ends when the snake
hits a wall or into any part of itself. Once the targeted square is ‘eaten’, a new
food unit will be randomly placed on the board while the snake stays in the
same position, and the game will continue this process until it meets the ending
game requirements. The main challenge is making sure the snake does not run
into itself or the wall since more space will be occupied by the snake as it eats
more food units which will leave less room for it to maneuver around the game
board. The way that the Al chooses to move directly influences the future state
of the game; for example, the board (represented by pixels/blocks), becomes
occupied by the body of the snake over time. The path that the snake will
have to take will be different depending on its size and the snake will have to
recognize itself continuously. Additionally, since the food is generally randomly
generated across the board, paths will have to be different depending on the
randomization of the reward as well. Pixels do not support diagonal paths and
rely on finding linear routes through corner turns so finding the corners to turn
that minimize the risk of impact is important. We recreated the single player
version of the game where the machine learns to play by utilizing Python and
some of its libraries such as PyGame, numpy, random, pickle, queue and used
a board of 200 x 250 pixels.

2 Algorithms and Design

We are using an algorithm called QLearning which is a type of reinforcement
learning. Because it is a form of reinforcement learning, there is an Al agent,
states, rewards, and actions. But unlike various other reinforcement learning
algorithms, QLearning uses model-free environments so the agent does not try
to learn or understand mathematical formulae or statistics. Instead, the agent
interacts with the environment directly. The agent explores the environment



with different approaches and learns through trial and error and updates its
understanding of the environment with what it has learned through those trials
and errors. QLearning has additional characteristics on top of the characteristics
it has as a reinforcement learning algorithm. One characteristic is that the
number of possible states is finite so the AI agent will be in one of the many
possible, fixed situations. Another characteristic is that the number of possible
actions is finite so the Al agent has to make choices on what action to take
based on a set of fixed possible actions (left, right, up, down). The agent will
begin at any state because it will appear on the board in any location. The
agent will not know initially what the goal state(s) is/are, but it learns how to
through QValues. QValues are represented in pairs where the first item is an
action and the second item is the quality of the state with the given action.
This is our heuristic as the QValues will give an estimate of the sum of future
rewards. The agent will eventually be able to identify the highest quality action
in any given state. The QValues will increase in correlation of the agent getting
closer to achieving the highest reward (whether positive or negative rewards to
minimize its total punishments) which is 0. QValues are usually stored in a
QTable, which is acting like a policy for what actions should be taken by the
agent, (but for our program, we are using a .txt file), which has one row for
each possible state and a row for each possible action. In order to figure out
what the Qvalue for an action taken in the previous state should be changed
for the current state’s action, QLearning uses temporal differences. This just
means that the previous QValue will be updated after each step. For instance,
if the current state provides the agent with a good reward, the previous QValue
will increase; the opposite is true. The Bellman Equation calculates what new
value should be used as the QValue for the action taken in the previous state.
It uses the old QValue for the action of the previous state as well as what the
agent has learned after going to the next state. The programmer can choose
what the learning rate parameter can be to adjust how quickly the QValues are
refined.

The algorithm starts with initializing the QTable. Then an action is chosen
from the QTable for the current state, which in most cases is whatever state
has the highest value. This is where we use an epsilon where the agent will
choose the action with the highest QValue a certain percentage of the time and
randomly for 1 - the percentage mentioned before. By doing this, the agent
will explore less promising paths initially, but in the long term it will learn a
better course of action. After the agent has decided what action to take, it
will move on to the next state. The agent will receive a reward (again, either
positive or negative) for the action previously taken and use that reward with the
knowledge of our new state to compute the temporal difference for the previous
action. Then, the Bellman equation is used to update the QValue for the most
recent action. This process repeats with the agent choosing an action for the
current state until a terminating state is reached. After the agent has reached a
terminating state, the agent is moved to an initial state and the process starts
again with the updated QValues. Eventually, the model will be fully trained
and the QValues will not be updated. The agent will take the actions with the



highest QValues. Because the number of states the agent can be in and based
on how restrictive the environment is, the time and space complexity will be
relatively related to the number of spaces on the board. The lower bound on
these complexities are:

O(n)

. This takes into account the need to store the reward.

In the description in above, it was mentioned that there were two additional
characteristics of QLearning on top of its characteristics as a reinforcement
learning algorithm. These were the finite states and the number of actions
taken. These are both a limitation as this hinders the exploration the agent
can do in the environment. Another limitation is the QTable as it assumes that
all states and actions can be represented in a matrix which can cause issues
when the number of actions and states become very large. Some alternatives
we were considering include, but are not limited to, are Deep QLearning and
BF'S (which would be used for comparing the algorithms). We plan on exploring
Deep QLearning if the time permits. There is also another variant of QLearning
such as double QLearning and maybe we could compare this to QLearning and
Deep QLearning.

3 Solution as a Human Model

Our solution imitates the way a human would think through negative and posi-
tive reinforcement. The Al is rewarded with points based on their actions. If the
system hits the target it gains 10 points while it will lose 1 point for landing on
empty space and lose 5 points for ending the game. The goal is for the game to
get as many points as possible or the smallest negative number possible. Similar
to a person, the Al tries to win by receiving a reward for what others deem as
good actions, which in a human would initiate a positive response. Both the
AT and a person are motivated by the reward so they would attempt to repeat
the actions that earned them the points. Losing points would cause a similar
reaction as well. Both the Al and a human will try to prevent losing points since
they are punished for wrong actions. In doing so, both the computer and person
would want to avoid the actions that would reduce their points or subtract from
what they previously earned.

4 Empirical Analysis

Trial QLearning Average Score

1 0.1
) 0.3
10 0.5
15 0.9

These results were formed from a QLearning algorithm with the snake game.
Since this is one of the most basic algorithms, it is expected for the agent to



learn very slowly. Each trial ran 10 times to collect a reasonable amount of data
on how the snake performed. In this reward system, eating an apple gives 10
points while dying is -5, and if the snake is moving in blank spaces it awards
-1 to encourage it to find the food. Seeing that the first trial had an average
score of 0.1 food eaten and the last had 0.9, one can see a gradual increase
in learning. Similar to QLearning, a better algorithm to implement would be
Deep QLearning. Instead of using a QTable, txt file in our implementation,

Deep QLearning replaces this with a neural network.
Trial BFS (Score per Trial)

1 68
2 93
3 71

As one can see, BFS initially is much more efficient than QLearning. These
results were completely expected. This search algorithm will look much better in
the beginning since it does not have to train the data. Theoretically, QLearning
will run as good as, if not better, than BFS search once it has learned how the
game works. This brings about a difficult question for the problem space. Since
QLearning (without a neural network) is much less efficient in the beginning, is
it better to implement a search algorithm? BFS is good in this situation, but
A* search algorithms have been proven to consistently perform better.

5 External Resources

In our program, pickle is a library similar to JSON that is used to mainy keep
persistent data. It converts objects into a byte stream that then can be stored.
Pickle is very easy to use and can quickly be imported into Python. The code
below simply opens the created txt file and then uses “rb”, opens the binary
final in read mode, to then be able to easily have pickle open it.

infile = open(” LearnedData.txt”, ”"rb”) #read binary
self.Q = pickle.load(infile)

Below is the pickle.dump() command. The first argument it takes is what we
want to convert to binary data and the second is where we want the converted
data to be saved. In this case the Q needs to be saved in file “f” which is the
“LearnedData.txt” file. Of course after this process is finished, the file needs to
be closed so no errors occur. The last line below is performing this action.

f = open(” LearnedData.txt”, "wb”) #write binary
pickle .dump(self.Q, f)
f.close ()

https://www.datacamp.com/community /tutorials/pickle-python-tutorial

BFS Search is another algorithm implemented in this project. In order to
make this work, BFS takes advantage of a queue. In Python there is a queue
module that can make this very simple. A queue works on the idea of FIFO,
or First in First out. These inbuilt Python functions make BFS much easier to



implement. Below, the code shows a constructor for the FIFO queue. Maxsize
simply sets the upper bound limit for the number of items that can be inserted
into the queue. 0 in this situation means infinity.

Q = queue.Queue(maxsize = 0)

https://www.tutorialspoint.com/stack-and-queue-in-python-using-queue-module
Below is a link to a page describing the BFS algorithm. For this project, a
lot of inspiration for BFS was used from this source. It helped describe how to
implement it correctly and efficiently. Between the source below and Python’s
queue module, they both helped create this algorithm.
https://pythoninwonderland.wordpress.com/2017/03/18 /how-to-implement-
breadth-first-search-in-python/

6 Conclusion and Additional Considerations

Allin all, the AT does adapt to its environment fairly quickly and does eventually
learn how to get the food. However, trying to surpass 5 or 6 points would get
more and more difficult almost exponentially as time goes on- the reason being
that the snake’s body would continue to grow and the way the algorithm adapts
would be slow to avoid self collision, especially when near completion. In order
to help alleviate the burden a higher level would cause, giving reward to having
a larger amount of non-enclosed space would be a good way to ensure better
future results. Non-enclosed space refers to the space that the snake does not
cover with its body- by minimizing the space (by going in looping or closely knit
patterns), the AT will be more efficient in solving the problems and eliminate
some common defeats in the late stage game. All in all, we learned that while
writing the initial game and learning algorithm was not difficult, getting the
algorithm to give the snake the optimal chance of winning was difficult to fine-
tune, and required forethought to the design of the game and the way that the
AT would eventually learn to handle the board.



